

HIGH VISCOSITY FLOW ANALYSIS USING MOVING PARTICLE SIMULATION METHOD

Seiichi Koshizuka, Shogo Kaito, Tasuku Tamai, Kohei Murotani and Kazuya Shibata

Department of Systems Innovation
The University of Tokyo
7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
koshizuka@sys.t.u-tokyo.ac.jp

Key Words: *Particle Method, Chemical Process, Mixing Tank.*

A semi-implicit algorithm is developed for incompressible flow in particle method [1]. Pressure Poisson equation is solved to evaluate the pressure gradient term implicitly, while the other terms are explicitly evaluated. This algorithm enables us to solve various engineering problems where the flow can be regarded as incompressible [2][3]. Since meshes are not necessary, the particle method is fitted to analyze free surface flow: for example, splashing made by a free-fall lifeboat [4] and large-scale analysis of tsunami inundation [5].

In the plastics manufacturing process, high viscosity fluid flow should be analyzed with free surfaces. With the standard MPS algorithm is used, the time step has to be very small due to the numerical stability condition represented by the viscosity number. This increases the calculation time. When the viscosity term is analyzed implicitly, the time step can be chosen arbitrarily to capture the phenomena. Non-Newtonian relationships in viscosity is also studied [6][7].

The algorithm should be improved when the force balance is mainly achieved by the viscosity term and the pressure gradient term. This is realized by evaluating the pressure term explicitly and solving the Poisson equation with respect to the pressure modification [8].

The present study shows the basic analysis as verification.

REFERENCES

- [1] Koshizuka A, Oka Y (1996) Moving-Particle Semi-implicit Method for Fragmentation of Incompressible Flow. *Nucl Sci Eng* **123**, 421-434.
- [2] Koshizuka S (2005) *Ryushihō, Maruzenshuppan*
- [3] Koshizuka S (2011) Current Achievements and Future Perspectives on Particle Simulation Technologies for Fluid Dynamics and Heat Transfer. *J Nucl Sci Technol* **48**, 155-168.
- [4] Shibata K, Koshizuka S, Sakai M, Tanizawa K, Ota S (2013) Numerical Analysis of Acceleration of a Free-fall Lifeboat Using the MPS Method. *Int J Offshore and Polar Eng* **23**, 279-285.

- [5] Murotani K, Ouchi M, Fujisawa T, Koshizuka S, Yoshimura S. (2012) Distributed Memory Parallel Algorithm for Explicit MPS Using ParMETIS. *Trans. Japan Society for Computational Engineering and Science*, Paper No.20120012.
- [6] Fukuzawa Y, Tomiyama H, Shibata K, Koshizuka S (2014) Numerical Analysis of High Viscous Non-Newtonian Fluid Flow Using the MPS Method. *Trans Japan Society for Computational Engineering and Science*, Paper No.20140007.
- [7] Tamai T, Koshizuka S (2014) Least Squares Moving Particle Semi-implicit Method. *Computational Particle Mechanics* **1**, 277-305.
- [8] Koshizuka S, Shibata K, Murotani K (2014) *Ryushihonyumon*, Maruzenshuppan